
IEEE Network • July/August 2019120 0890-8044/19/$25.00 © 2019 IEEE

AbstrAct
Artificial intelligence (AI) technology makes

mobile devices become intelligent objects that
can learn and act automatically. Although AI will
bring great opportunities for mobile applications,
little work has focused on the architecture and the
interaction with the cloud. In this article, we present
three existing architectures of mobile intelligence in
detail and introduce its broad application prospects.
Furthermore, we conduct a series of experiments
to evaluate the performance of the prevalent com-
mercial applications and intelligent frameworks. Our
results show that there is a big gap between Quality
of Experience (QoE) requirements and the status
quo. So far, we have seen only the tip of the ice-
berg. We pose issues and challenges to advance the
area of mobile intelligence and hope to pave the
way for future advancements.

IntroductIon
AI has recently attracted significant attention
from both industry and academia, as it gives the
machine the ability to perceive its environment and
take actions. Specifically, it can extract high-level
features from image, audio, or other signals auto-
matically, leading to a wide range of applications
including computer vision, speech and natural
language processing. In the meantime, mobile
devices have become both ubiquitous and increas-
ingly powerful. A large volume of multimedia data
is being produced and released into mobile cellular
networks [1]. Therefore, there is an increasing inter-
est in applying AI to mobile environments. Among
existing mobile intelligent applications, Machine
Learning (ML) is the most commonly-used technol-
ogy. Thus, in this article we focus on the intelligent
applications based on ML.

Previous works on mobile intelligence have
only focused on the hardware platforms or the
software models. Specifically, some teams are opti-
mizing mobile hardware chips to support the oper-
ation of the ML model, and others try their best to
build lightweight models without loss of learning
performance. However, there is scant research on
the architecture choice of mobile intelligent appli-
cations. It is important to understand the existing
architectures and optimize it from a more global
perspective. To fill this gap, in this article we pres-
ent the first study on the architecture, experimenta-
tion and challenges of mobile intelligence.

First, we divide existing intelligent applica-
tions into three different architectures, namely
cloud-based, local-based and partial offloading.
We provide a technical overview including the

introduction of the system architecture, major
components and detailed functionalities. This
architecture is applicable to all the mainstream
ML models. Some researchers have developed
intelligent applications using local-based [2, 3]
and others have adopted cloud-based [4, 5].
There is also research work concerning combined
models, such as making dynamic decisions on
local-based or cloud-based [6]. Moreover, some
researchers are exploring a new architecture: par-
tial offloading [7, 8]. On this basis, we propose
three important QoE metrics to evaluate the per-
formance of these mobile intelligent applications.

Around these metrics, we conduct measure-
ments on prevalent commercial applications and
intelligent frameworks. In the process of measur-
ing Google Translate, we have selected two func-
tions, namely Word Lens and Speech-to-speech
translation, which represent the local-based and
cloud-based architectures, respectively. In the
process of measuring TensorFlow’s application
programming interfaces (APIs), we have devel-
oped two applications, namely TF-local-based
and TF-cloud-based, which represent the local-
based and cloud-based architectures, respective-
ly. Using both black-box testing and white-box
testing, we get important metrics such as laten-
cy, CPU/RAM utilization and discharge rate. For
the data obtained, we sort them out and find the
mean and standard deviation. We conclude all
experiment results and give some analysis. We
find that there is indeed a big gap between QoE
requirements and the status quo. Furthermore, we
conduct a measurement study on partial offload-
ing architecture using the Inception-v3 model [9].
We find that the best partition point for latency
is closely related to network bandwidth rate and
the computational capability of the mobile device.

Since there are many difficulties and challeng-
es on the way to mobile intelligence, we propose
the key challenges that are most likely to appear
and give some insights for future improvement.
Specifically, we consider unstable network con-
ditions, considerable energy consumption, priva-
cy disclosure, increasing model complexity and
coarse-grained partition of the inference process.
To the best of our knowledge, this is the first
article that provides a wide overview and experi-
mental evaluation for the existing architectures of
mobile intelligent applications.

ArchItecture
ML models are particularly well suited for per-
forming perceptual tasks, which can sense, learn
from and respond to their environment. Depend-

A First Look at Mobile Intelligence: Architecture, Experimentation and Challenges
Ziyi Wang, Yong Cui, and Zeqi Lai

ACCEPTED FROM OPEN CALL

Digital Object Identifier:
10.1109/MNET.2019.1700470 The authors are with Tsinghua University. Yong Cui is the corresponding author.

This project is supported by NSFC
(No. 61872211), and the National
Key R&D Program of China (No.
2017YFB1010002).

Authorized licensed use limited to: Tsinghua University. Downloaded on June 15,2022 at 03:46:34 UTC from IEEE Xplore. Restrictions apply.

IEEE Network • July/August 2019 121

ing on the location of these trained models, we
divide the existing applications into three different
architectures, namely cloud-based, local-based
and partial offloading, which are illustrated in Fig.
1. Two major components can be identified in
this figure: the mobile client and the cloud server.
We first introduce the detailed functionalities of
these two components.

Mobile Client: The mobile client receives
input signals and preprocesses them locally. Then
the mobile sends them either to the cloud’s ML
model, or to the local model. After processing,
the mobile client obtains the prediction results
and presents the information to the user.

Cloud Server: The cloud server has abundant
computing resources such as CPU, GPU and
TPU, by which the cloud server can complete the
training of the ML model. In order to train it, we
need to provide the cloud server with the training
data and configuration files of the related models.
The cloud can also continue to carry well-trained
models and provide web APIs to help inference
processing.

As shown in Fig. 1, Phones A, B and C rep-
resent three typical architectures respectively.
Here we briefly describe their workflow and their
advantages and disadvantages.

Phone A is the cloud-based phone, which
means the mobile client and cloud server work
together to make predictions including a training
process and an inference process. When training
is done on the server, the cloud server obtains the
learned parameters for the model. Then we can
put the trained model on the server and publish
web APIs that mobile devices can use. Since the
model is on the server, it is easy to port the appli-
cation to different platforms. However, inference
depends on the network and cannot be done
locally on the device.

Phone B is the local-based phone, which
means only the mobile makes predictions. We put
the trained model into mobile devices and infer-

ence locally. We do not need to ask the server
over the network during the inference process.
It can be faster and more reliable. However, it
requires large amounts of CPU and RAM resourc-
es on the mobile.

Phone C represents the partial offloading archi-
tecture, which is a more flexible and dynamic
one. The model is composed of many abstract
layers. On one hand, the mobile client partitions
the model according to the current circumstanc-
es, including network condition, mobile capability
and server load. On the other hand, it executes
the model up to a specific layer and transfers the
intermediate data to the cloud through the net-
work. Then the cloud server executes the remain-
ing layers and sends the prediction results back
to the mobile client. This architecture would be
more appealing when mobile applications are
becoming more and more intelligent.

The architecture above is universal to which
the mainstream ML models are all applicable,
such as Deep Neural Network (DNN), Reinforce-
ment Learning (RL) models and Generative Adver-
sarial Network (GAN). The only thing we need to
do is to make the corresponding replacement for
the specific model.

Based on these three architectures, we have
seen diverse mobile intelligent assistants such as
Google Home, Apple Siri and Microsoft Cortana.
All of them use accurate and complex ML tech-
nologies to process voice signals. In order to bet-
ter depict the user experience of these mobile
intelligent applications, we introduce three QoE
metrics.

Latency: Latency refers to the time that elapses
between the user’s request and the prediction
results, including pre-processing, model operation
and post-processing. For some real-time interac-
tive intelligent applications, such as mobile Vir-
tual Reality (VR), they require 14ms latency and
60FPS (the phone display refresh rate) [10]. For
cloud gaming providers, interaction latency must

FIGURE 1. Mobile intelligence architecture: cloud-based, local-based, and partial offloading.

Authorized licensed use limited to: Tsinghua University. Downloaded on June 15,2022 at 03:46:34 UTC from IEEE Xplore. Restrictions apply.

IEEE Network • July/August 2019122

be kept as short as possible in order to provide a
rich experience to cloud gaming players [11].

Accuracy: Accuracy refers to the ratio of the
number of samples that get the correct results to
the total number of samples, which can be used
to measure the performance of the model. For
some applications requiring a high level of secu-
rity, such as autonomous driving and road naviga-
tion, they require ultrahigh accuracy. Inaccuracy
of any prediction result will be life-threatening.
Some researchers have proposed that a well-
trained DNN can predict the steering angle with
an accuracy close to that of a human driver [12].

Energy: Mobile devices are energy-con-
strained. However, running these complex models
can introduce considerable computing and com-
munication overhead. Although mobile intelligent
applications are very attractive to users, they will
most likely choose not to use them if the energy
consumption is huge. Therefore, energy effi ciency
is a desired goal in these mobile intelligent appli-
cations.

eXperIMentAtIon
There have been many daily-used commercial
mobile intelligent applications, such as Goo-
gle Translate [13]. In addition, many effective
open-source libraries and frameworks have also
appeared, such as Tensorflow, which provides
convenience for developing intelligent applica-
tions on mobile devices. We conduct a measure-
ment study to quantitatively describe their QoE
level. Specifi cally, we measure from two perspec-
tives: commercial mobile intelligent applications
and mobile intelligent frameworks. We also mea-
sure the QoE on the partial offloading architec-
ture based on the Inception-v3 model [9]. We
run the applications on a Nexus 6P smartphone.
The data is sent to the cloud over the wireless
network.

MeAsureMent on
coMMercIAl MobIle IntellIgent ApplIcAtIons

We first measure Google Translate, one of the
most commonly used mobile applications. When
using its speech-to-speech translation function,
we need to connect to the Internet. Hence, it
belongs to the cloud-based architecture. Howev-
er, Google Translate’s augmented reality feature,
Word Lens, is done through offline language

packs. Consequently, it belongs to the local-
based architecture. Since the source code for
the app is not public, we conduct a black box
test by recording video. Specifi cally, we collect
100 images and 100 sentences in English, which
are transmitted to the mobile application (Goo-
gle Translate) in the form of image and voice,
respectively. In the process of translating these
sentences from English into Chinese, we record
it into videos. Then we analyze the video frame
by frame and calculate the latency of processing
each image or voice. As for the CPU and RAM
utilization, we use Emmagee software, which is
a simple and easy-to-use Android performance
monitoring tool. Users can confi gure monitoring
frequency and get performance statistics even-
tually. In addition, we leverage the Google Bat-
tery Historian tool to inspect the discharge rate
of the Android device over time. For the data
obtained, we sort them out and find the mean
and standard deviation, as shown in the Fig. 2.

From the measurement results, we observe
that the Word Lens function achieves lower laten-
cy, higher utilization rate of CPU/RAM and higher
discharge rate. Since it computes locally based
on offline language packs, it is faster but more
resource-consuming. In contrast, the speech-to-
speech function has larger latency, lower utiliza-
tion rate of CPU/RAM and lower discharge rate.
Since it sends voice to the cloud for processing,
the network round-trip latency is larger while
the local CPU/RAM resource utilization and dis-
charge rate of the mobile device is lower. After
more in-depth analysis, we fi nd that the latencies
of the two functions are in the hundred-millisec-
ond level, which is relatively large. In the mea-
surement of Word Lens, we fi nd if we move the
smartphone in real time, it cannot process imme-
diately to give the right results and it seems to be
stalling. In addition, this function only provides
accurate translation for short and simple sentenc-
es. Once complex texts appear, the accuracy rate
is greatly reduced. Worse still, some words are
translated while others are not, which seriously
affects the user experience. What’s more, CPU
utilization of this function has reached 32.37
percent and discharge rate has reached 39.94
percent per hour, leading to high workload and
energy consumption of the smartphone. In the
measurement of speech-to-speech, we find that
although the CPU/RAM resource utilization
and discharge rate is lower, the latency is larger.
When we gradually weaken the wireless network,
the latency can reach even a few seconds, which
is unbearable.

MeAsureMent on MobIle IntellIgent frAMeWorKs
TensorFlow is one of the most prevalent frame-
works in the deep learning ecosystem. It pro-
vides an inference interface that can be called
to complete the entire neural network pro-
cessing including input, running and output. In
order to measure its performance, we develop
two applications that can classify camera imag-
es based on the two kinds of architectures. We
call them TF-local-based and TF-cloud-based,
respectively. TF-local-based can classify images
and display the top results in an overlay on the
camera image. It runs the neural network totally
on the mobile device. In contrast, TF-cloud-based

FIGURE 2. Latency, CPU/RAM utilization and discharge rate of Word Lens and
speech-to-speech translation.

Authorized licensed use limited to: Tsinghua University. Downloaded on June 15,2022 at 03:46:34 UTC from IEEE Xplore. Restrictions apply.

IEEE Network • July/August 2019 123

is a client-server architecture. We first need to
start a Flask web server preparing to receive the
mobile’s request. When the mobile device cap-
tures an image, the application will send it to the
server through the network. The server receives
the image and runs the neural network model to
get the fi nal results. The top classifi cation results
will be sent back to the mobile edge through
the network and presented to the user. We use
the Inception-v3 model trained on the ImageNet
Large Visual Recognition Challenge dataset for
both applications. The model can differentiate
between 1,000 diff erent classes. During the mea-
surement, we collect 100 images from the test
set and transmit them to these two applications,
respectively. Since we have source code for both
applications, we measure the latency by insert-
ing timestamps into the code. Latency refers to
the time that elapses between the image request
and the prediction result. For the CPU and RAM
utilization measurement, we still use Emmagee
software. For the battery energy measurement,
we still use Google Battery Historian. We also
compare latency, CPU/RAM utilization and dis-
charge rate between them, which are illustrated
in Fig. 3.

From the experimental results, we can fi nd that
the latencies of both applications are more than
3000ms, under which condition real-time object
classification is not applicable. More seriously,
TF-local-based’s CPU and RAM utilization reach
49.96 percent and 10.46 percent, respectively,
which seriously affects the normal operation of
the smartphone. What’s more, its discharge rate is
about 35.39 percent per hour, which means this
application can only last for 2.83 hours.

Combining all the measurement results, we can
fi nd that existing cloud-based and local-based solu-
tions do not meet the needs of users. Although ML
brings intelligence to mobile applications, there
still exist hundreds of milliseconds or even seconds
in terms of latency. CPU and RAM utilization is
excessively high and the corresponding energy
consumption is increasing. In addition, accuracy
of the processing results is far from satisfactory.
Hence, there is indeed a big gap between QoE
requirements and the status quo.

MeAsureMent on pArtIAl offloAdIng ArchItecture
Since both cloud-based and local-based archi-
tectures fail to meet the requirements, we make
some measurements on a new architecture: par-
tial off loading. We develop an application based
on Tensorfl ow which can classify the images cap-
tured by the phone camera. We partition the
Inception-v3 model at the layer granularity. Spe-
cifically, we set each layer as a partition point.
For the given partition point, the mobile-end
executes the computation up to it and transfers
intermediate data to the cloud. Next, the cloud
executes the remaining layers and transfers the
prediction results back to the mobile-end. For
each partition method, we send 100 test imag-
es to the application and compute the average
latency. We make experiments under different
network bandwidths (0.2, 1 and 5MB/s) and dif-
ferent mobile phones (Pixel and Nexus 6P) which
represent various computation capabilities. Since
we have source code for both applications, we
break down the end-to-end processing latency,

including mobile processing, network commu-
nication and server processing. The results are
shown in Fig. 4. Each bar represents the end-to-
end latency for a specifi c partition method. The
leftmost bar represents the cloud-based architec-
ture while the rightmost bar belongs to the local-
based architecture.

From the results, we can fi nd that every layer
has a totally diff erent computational capacity. The
best partition point for latency is diff erent under
diff erent circumstances, which is closely related to
the network bandwidth rate and the computation-
al capability of the mobile device. We can also
find that these existing best results are still high
and far from meeting the users’ need for latency.

chAllenges
Since there is a huge gap between QoE require-
ments and the status quo, we should make every
effort to bridge it. However, during this process
we may face many challenges, as we highlight in
this section.

Network Condition is Unstable, Unsatisfied
and Unpredictable: Network condition is con-
stantly changing and it is diffi cult to select a fi xed
formula to characterize it. In addition, for some
mobile VR applications, the existing network sit-
uation is far away from the QoE requirements.
Therefore, it is a challenge to dynamically assign
tasks between the mobile and the cloud accord-
ing to diverse network conditions. A relatively
simple method is that we use some regression
models to predict the current wireless network
conditions based on some real-time probe data.

Either Local Computing or Communicating
with the Cloud will Consume Considerable Ener-
gy: The successful operation of the mobile assis-
tant requires a signifi cant amount of computation
and communication overhead. To solve this prob-
lem, we need to propose a more effi cient mobile
energy-saving mechanism. A viable solution is to
develop an energy model tool to record data fl ow
and energy fl ow. It tells us how much energy the
model consumes and where the bottleneck exists.
Then we can use this information to design new
energy-effi cient models or to optimize the existing
models.

Cooperation with the Cloud will Inevitably
Produce the Issue of Privacy Disclosure: The
data collected by the mobile devices can be very

FIGURE 3. Latency, CPU/RAM utilization and discharge rate of TF-local-based
and TF-cloud-based.

Authorized licensed use limited to: Tsinghua University. Downloaded on June 15,2022 at 03:46:34 UTC from IEEE Xplore. Restrictions apply.

IEEE Network • July/August 2019124

sensitive and private. Uploading this information
onto the cloud without any preprocessing consti-
tutes a great danger to an individual’s privacy. In
the future, users may have the choice to use a dif-
ferent method to process these data (local-based,
cloud-based or partial offloading), depending on
which option best suits the situation.

Model Complexity and Data Size are
Increasing: Take the example of deep learning.
The models are becoming more and more com-
plex, with the number of parameters and layers
is increasing significantly. Although this change
improves the performance of models, it also pres-
ents new challenges in adapting resource-con-
strained mobile to these advanced models. To
deal with this challenge, some teams provide
hardware solutions. For example, Huawei’s new
flagship Kirin 970 is Huawei’s first mobile AI
computing platform featuring a dedicated neural
processing unit (NPU). This chip can perform
the same AI computing tasks faster and with less
power. In the meantime, some teams are work-
ing on extending software frameworks for the

mobile. For example, Google has announced
Tensorflow Lite, which is a lightweight solution
for mobile and embedded devices. It can also
support hardware acceleration with the Android
Neural Networks API.

Current Partition of the Inference Process
is Still Coarse-Grained: Actually, many mod-
els can be split into different kinds of modules
which are respectively responsible for different
functions. In addition, distribution of latency
varies a lot and is closely related to the corre-
sponding workload. For example, DeepMon
[14] indicates that the convolutional layers
dominate the execution cycles in the VGG-
VeryDeep-16 and YOLO model. DeepEye [15]
demonstrates that the loading of fully-con-
nected layers is the most time-consuming task
across eight different models. Neurosurgeon [7]
indicates that for AlexNet, VGG and DeepFace,
convolution layers are the most time-consum-
ing; for MNIST, fully-connected layers are the
most time-consuming; for Kaldi and SENNA,
layers of the model incur similar latency. Faced

FIGURE4. End-to-end latency when choosing different partition points with different mobile devices and network conditions: a) Pixel,
bandwidth = 0.2MB/s; b) Nexus 6P, bandwidth = 0.2MB/s; c) Pixel, bandwidth = 1MB/s; d) Nexus 6P, bandwidth = 1MB/s;
e) Pixel, bandwidth = 5MB/s; f) Nexus 6P, bandwidth = 5MB/s.

(a) (b)

(c) (d)

(e) (f)

Authorized licensed use limited to: Tsinghua University. Downloaded on June 15,2022 at 03:46:34 UTC from IEEE Xplore. Restrictions apply.

IEEE Network • July/August 2019 125

with this situation, we should propose a deep
integration architecture between mobile and
cloud, which splits the functional modules intel-
ligently according to different workloads, mod-
els, network conditions and server loads.

conclusIon
Since there will be more and more applications
implemented with ML technology on the mobile,
understanding the existing architectures of the
mobile intelligent applications is significant for
both industry and academia. In this article, we
present a thorough overview of the mobile intel-
ligence by introducing its architectures, com-
ponents and functionalities, followed by an
experimental study that evaluates the prevalent
commercial applications and intelligent frame-
works. All tested services suffer performance lim-
itations. Our results show that there is a big gap
between QoE requirements and the status quo.
Finally, we conclude experiment results and pro-
pose challenges. To the best of our knowledge,
this is the first article that provides a wide over-
view and experimental evaluation for the existing
architectures of the mobile intelligent applications.
As for future work, we intend to do more detailed
measurements, identify the bottleneck and pro-
pose advanced mobile intelligence architectures.

references
[1] J. Liu et al., “Device-to-Device Communication for Mobile

Multimedia in Emerging 5G Networks,” TOMCCAP, vol. 12,
no. 5s, 2016, p. 75.

[2] N. D. Lane, P. Georgiev, and L. Qendro, “Deepear: Robust
Smartphone Audio Sensing in Unconstrained Acoustic Envi-
ronments Using Deep Learning,” Proc. UbiComp, ACM,
2015, pp. 283–94.

[3] I. McGraw et al., “Personalized Speech Recognition on
Mobile Devices,” Proc. IEEE ICASSP, 2016, pp. 5955–59.

[4] P. Peng et al., “DeepCamera: A Unified Framework for Rec-
ognizing Places-of-Interest Based on Deep Convnets,” CIKM,
ACM, 2015, pp. 1891–94.

[5] C. Zhang, X. Ouyang, and P. Patras, “ZipNet-GAN: Infer-
ring Fine-Grained Mobile Traffic Patterns via a Generative
Adversarial Neural Network,” Proc. CoNEXT. ACM, 2017,
pp. 363–75.

[6] X. Ran et al., “Delivering Deep Learning to Mobile Devices
via Offloading,” Proc. VR/AR Network@SIGCOMM. ACM,
2017, pp. 42–47.

[7] Y. Kang et al., “Neurosurgeon: Collaborative Intelligence
Between the Cloud and Mobile Edge,” Proc. ASPLOS, ACM,
2017, pp. 615–29.

[8] A. E. Eshratifar, M. S. Abrishami, and M. Pedram, “Joint-
DNN: An Efficient Training and Inference Engine for Intel-
ligent Mobile Cloud Computing Services,” arXiv preprint
arXiv:1801.08618, 2018.

[9] C. Szegedy et al., “Rethinking the Inception Architecture for
Computer Vision,” CVPR, 2016, pp. 2818–26.

[10] Z. Lai et al., “Furion: Engineering High-Quality Immersive
Virtual Reality on Today’s Mobile Devices,” Proc. MobiCom.
ACM, 2017, pp. 409–21.

[11] R. Shea et al., “Cloud Gaming: Architecture and Perfor-
mance,” IEEE Network, vol. 27, no. 4, 2013, pp. 16–21.

[12] M. Bojarski et al., “End to End Learning for Self-Driving
Cars,” arXiv preprint arXiv:1604.07316, 2016.

[13] Y. Wu et al., “Google’s Neural Machine Translation System:
Bridging the Gap Between Human and Machine Transla-
tion,” arXiv preprint arXiv:1609.08144, 2016.

[14] L. N Huynh, Y. Lee, and R. K. Balan, “DeepMon: Mobile
GPU-Based Deep Learning Framework for Continuous
Vision Applications,” MobiSys. ACM, 2017, pp. 82–95.

[15] A. Mathur et al., DeepEye: Resource Efficient Local Execu-
tion of Multiple Deep Vision Models Using Wearable Com-
modity Hardware,” Proc. MobiSys. ACM, 2017, pp. 68–81.

bIogrAphIes
Ziyi Wang (wangziyi0821@gmail.com) is now a Ph.D. student
in the Department of Computer Science and Technology, Tsin-
ghua University. His supervisor is Prof. Yong Cui. His research
interests include mobile systems and mobile computing.

yong Cui (cuiyong@tsinghua.edu.cn) received his B.E. and
Ph.D. degrees in computer science and engineering from
Tsinghua University, China, in 1999 and 2004, respectively.
He is currently a full professor at Tsinghua University and
Co-Chair of IETF IPv6 Transition WG Softwire. His major
research interests include mobile wireless Internet and com-
puter network architecture. Having published more than 100
papers in refereed journals and conferences, he received the
National Award for Technological Invention in 2013, and the
Influential Invention Award of the China Information Industry
in both 2012 and 2004. Holding more than 40 patents, he
has authored three Internet standard documents, including
RFC 7040 and RFC 5565, for his proposal on IPv6 transition
technologies. He serves on the Editorial Board on both IEEE
TPDS and IEEE TCC.

Zeqi Lai (laizq13@mails.tsinghua.edu.cn) is now a Ph.D. student
in the Department of Computer Science and Technology, Tsin-
ghua University. His supervisor is Prof. Yong Cui. His research
interests include mobile computing and cloud storage.

To the best of our knowledge, this is the first article that provides a wide overview and experimental
evaluation for the existing architectures of the mobile intelligent applications. As for future work,

we intend to do more detailed measurements and indentify the bottleneck and propose
advanced mobile intelligence architectures.

Authorized licensed use limited to: Tsinghua University. Downloaded on June 15,2022 at 03:46:34 UTC from IEEE Xplore. Restrictions apply.

